A NEW OLIGOCENE-MIOCENE SPECIES OF BURRAMYS (MARSUPIALJA. BURRAMY'DAE) FROM RIVERSLEIGH. NORTHWESTERN QUEENSI.AND

J. BRAMMALL AND M. ARCHER

Brammall. J. \& Archer, M. 199706 30: A new Oligocere-Miocene species af fummms (Marsupiahia, Bursamydae) from Riversleigh, norlawestern Queensland. Memoirt of the Queenslant Musfimm $41(2): 247-208$. Brishane $15 S N 107 y-8835$

Burvants is abundant in the Oligueene-Mocene at Ruersleigh, northwestern Queenstand Burramss brutisp. not, is represented by ower 150 edentafy and maxillary fraghents and isolated beth from 22 sites. Burnamy appears to be morpholugieally conservative, withomly minne metrical variation between specimens of B. hrmby from dilierem sites and relatively few features distinguishing Mincene. Plincene and Recent species. Phylogenetio aralyats suggest that B. hrun is the plesiomorphie sister-group wall other species of Burnmys. with B. weakefieldi susteregroup to the chade comprising B. mitadiams and fo. panims : 7 Burramiduc, Rurnamys brmwi. Roersleigh. Oligocene. Afonene.
J. Brammall di M. smore. Sohorl of Biologmal Scrance, Liminersm of New Samh Weales. New Souh Wales 3052. Ausmblar rocerisid + Nomemer 1096.

Burramys was represented unly by Pleistacenc fossils of B. panus from Wombeyan Caves. NSW (Broom. 1896) and P'yramids Cave. Victofia (Wakefield, F960) until 1966 when the Mountain Pyemy-possum, B. parins, was discovered alive at Mount Hotham. Victoria (Anono. 1966: Warneke, 1967). Two more fossil species of Burramys have been idenified: early Plincene B. miradions: Irom Hamilton. Victoria (Turnbull el al.. 1987) and B. watefichti from late Oliguene (Wortburne el al. 1993) Ngama Local Fauna. South Australia (Pledge, 1987). Disenvery of Mincene Burramys at Riversleigh extends the geographic range far north and prowides the first sizable Tertary sample (150) specimens). A metric analysis of this satuple aims to deverntinc taxat present and to assess variation Burrams hruyi sp. nov. is used as the basis for ancevaluation of intrageneric phytogenction ol farmonn
Dental homology fillows Flower (1867) lior premolar numbering and Luckell (1993) Lor premindar/molar boundary and molar number. Touth positons given withou super-or subscript numhers reter to hoth upper and lower teeth: thas. M^{-4} and M_{4} are individual testh but M 4 refers to both. Molar cusp nomenclature Fillows Archer (1984) mut Pledge (1987). Pledge's paraconid is our protoconid; his protoennid is not recognised.
Higher sysiematic nomenclature follows Aplin \& Archer (1987). System nomenclature is hased on Archeret id. (1989) and Creaser (1997). Maeerial referred in is housed in the Queensland Museum, Bristane (QMF) or Museum of Victobia, Melhourne, (NMVP) Me:buremens in millimetres (mon) are w the nearest 1.0 (1) minusing a Wild MMS235 Digital Leneth-Mcusuring Sol
attached to a Wiłd M5A stercomicroscope. Molar lengths and widths and molar row lengths were measured as the maximum dimensions of the enamel-covered crown(s) with the teeth in occlasal ve゙り. with lengths taken along the anteroposterior axis of the booth and widhs. measured perpendicular to that axis. For P_{3} in dorsal view and P^{3} in ventral view, maximum Iength was measured parallel to the anical blade edge, and anterior posterior and maximam widths were measured perpendicular to the blathe edge; huceal and lingual heights were measured from the base of the enamel at the saddle between the roots, to the median apical edge paraltel to the posterion edge of the tonth. Stutistical analyses were perlormed using SYSTAT and KalcidaGraph data analysis and graphics applications.

METRIC ANALISIS

Deapte overall uniformity. Riversleigh Burrams material shows some variation in refle tive and absolute premolar and molar sises. Ner. ric analysis of dentat leatures attempted to identily patlerns which might indicate seaual di morphism, specific or subspecific separation or differentiationul porpulations from differentsice. Univariate and bivariate distributions and princtipal enmponents analysis were conphoyed.
Cheeklath domensions (Tible 1) hor Recem B. pervix pupulaums refer to feft dentition ex cept where the right dentition was more compleke. Stiendard errur (SE) is used rather than standiard deviation (SD, hecause it hetler indicates reliahility of the men estimate. The enefficient of varation (CV) $=S D$ divided by mean a $1(\mathrm{~F})$.

TABLE 1. Cheektooth dimensions of Burramys species. Results given as: Mean \pm Standard Error (No. Specimens) Coefficient of Variation (CV\%). CV not given where n 2. $\mathrm{L}=$ length, $\mathrm{AW}=$ anterior width, PW = posterior width, $\mathrm{MW}=$ maximum width, $\mathrm{LH}=$ lingual height, $\mathrm{BH}=$ buccal height.

	Riversleigh Burramys	B. wakefieldi		B. triradiatus		B. parous	
Lower teeth	CV		CV		CV		CV
$\mathrm{P}_{3} \mathrm{~L}$	1.81 ± 0.01 (38) 4.00	1.64	(1)	2.58 ± 0.05 (4)	3.68	2.17 ± 0.01 (21)	1.96
$\mathrm{P}_{3} \mathrm{AW}$	1.03 ± 0.01 (38) 8.21	0.86	(1)	1.04 ± 0.01 (4)	1.85	0.85 ± 0.02 (21)	10.51
P3PW	1.22 ± 0.01 (38) 5.07	1.22	(1)	1.49 ± 0.06 (4)	7.96	1.32 ± 0.01 (21)	4.11
$\mathrm{P}_{3} \mathrm{MW}$	1.27 ± 0.01 (29) 5.58	1.22	(1)	1.67 ± 0.06 (4)	6.61	1.39 ± 0.02 (21)	4.79
$\mathrm{P}_{3} \mathrm{LH}$	1.44 ± 0.01 (37) 5.25	1.29	(1)	2.02 ± 0.04 (4)	3.73	1.92 ± 0.01 (19)	3.23
$\mathrm{P}_{3} \mathrm{BH}$	1.73 ± 0.02 (37) 5.64	1.51	(1)	2.44 ± 0.05 (4)	3.98	2.22 ± 0.02 (20)	3.05
$\mathrm{M}_{1} \mathrm{~L}$	1.24 ± 0.01 (32) 3.71	1.21	(1)	-		1.57 ± 0.01 (21)	2.02
M1 AW	0.78 ± 0.01 (32) 7.89	0.86	(1)	-		1.00 ± 0.01 (21)	4.23
M1 PW	0.95 ± 0.01 (32) 5.80	0.97	(1)	-		1.25 ± 0.01 (21)	3.60
$\mathrm{M}_{2} \mathrm{~L}$	1.09 ± 0.01 (32) 3.72		-	1.55 (1)		1.57 ± 0.01 (21)	1.97
M2 AW	0.88 ± 0.01 (34) 5.55		-	1.23 (1)		1.21 ± 0.01 (21)	2.03
$\mathrm{M}_{2} \mathrm{PW}$	0.96 ± 0.01 (34) 5.67		-	1.32 (1)		1.32 ± 0.01 (21)	1.90
M3L	0.93 ± 0.02 (10) 6.48		-	1.32 ± 0.04 (2)	4.29	1.23 ± 0.01 (19)	1.84
$\mathrm{M}_{3} \mathrm{AW}$	0.84 ± 0.01 (10) 4.46		-	1.13 ± 0.00 (2)	0.00	1.06 ± 0.01 (19)	2.25
$\mathrm{M}_{3} \mathrm{PW}$	0.85 ± 0.02 (10) 6.13		-	1.17 ± 0.01 (2)	0.61	1.07 ± 0.01 (19)	2.76
$\mathrm{M}_{4} \mathrm{~L}$	0.66 (1)		-	-		0.68 ± 0.01 (14)	5.88
$\mathrm{M}_{4} \mathrm{AW}$	0.64 (1)		-	-		0.66 ± 0.01 (14)	6.83
$\mathrm{M}_{4} \mathrm{PW}$	0.50 (1)		-	-		0.52 ± 0.01 (14)	7.82
M_{1-2}	2.30 ± 0.02 (27) 3.37		-	-		3.13 ± 0.01 (21)	1.96
M_{1-3}	3.24 ± 0.05 (8) 3.91		-	-		4.34 ± 0.01 (19)	1.34
M ${ }_{1-4}$	3.83 (1)		-	-		4.93 ± 0.02 (14)	1.29
Upper teeth p^{3} L	2.01 ± 0.02 (17) 4.89		-	2.59 ± 0.02 (2)	1.09	2.27 ± 0.01 (19)	2.60
P^{3} AW	0.93 ± 0.01 (17) 4.32		-	0.91 ± 0.02 (2)	2.32	0.75 ± 0.02 (19)	10.39
$\mathrm{P}^{3} \mathrm{PW}$	1.20 ± 0.01 (17) 4.93		-	1.63 ± 0.05 (2)	4.79	1.13 ± 0.01 (19)	3.82
$\mathrm{P}^{3} \mathrm{MW}$	1.25 ± 0.01 (17) 4.41		-	1.63 ± 0.05 (2)	4.79	1.24 ± 0.01 (19)	2.44
$\mathrm{P}^{3} \mathrm{LH}$	1.58 ± 0.02 (17) 4.67		-	2.32 ± 0.02 (2)	1.22	1.92 ± 0.01 (16)	2.76
$\mathrm{P}^{3} \mathrm{BH}$	1.65 ± 0.02 (17) 4.44		-	2.16 ± 0.01 (2)	0.98	2.06 ± 0.02 (18)	3.08
$M^{1} \mathrm{~L}$	1.12 ± 0.02 (14) 4.86		-	-		1.51 ± 0.01 (19)	1.94
$\mathrm{M}^{1} \mathrm{AW}$	1.16 ± 0.02 (14) 5.25		-	-		1.40 ± 0.02 (19)	7.08
$M^{1} \mathrm{PW}$	1.17 ± 0.01 (14) 4.14		-	-		1.45 ± 0.01 (19)	4.01
M ${ }^{1} \mathrm{MW}$	1.39 ± 0.01 (14) 3.90		-	-		1.68 ± 0.01 (18)	2.77
$M^{2} \mathrm{~L}$	0.98 ± 0.01 (8) 3.45		-	1.22 (1)		1.45 ± 0.01 (19)	1.53
$\mathrm{M}^{2} \mathrm{AW}$	1.16 ± 0.01 (8) 2.84		-	1.34 (1)		1.56 ± 0.01 (19)	2.20
$M^{2} \mathrm{FW}$	0.93 ± 0.01 (8) 2.40			1.10 (1)		1.27 ± 0.01 (19)	3.37
$\mathrm{M}^{3} \mathrm{~L}$	0.86 ± 0.03 (3) 6.43		-	-		1.09 ± 0.02 (18)	8.17
$\mathrm{M}^{3} \mathrm{AW}$	0.93 ± 0.02 (3) 2.84		-	-		1.19 ± 0.03 (18)	10.83
$M^{3} \mathrm{PW}$	0.72 ± 0.03 (3) 7.86		-	-		0.88 ± 0.02 (18)	10.71
$M^{4} \mathrm{~L}$	0.67 ± 0.02 (3) 5.68		-	-		0.77 ± 0.01 (13)	4.86
M^{4} AW	0.71 ± 0.02 (3) 4.97		-	-		0.74 ± 0.02 (13)	8.81
$\mathrm{M}^{4} \mathrm{PW}$	0.46 ± 0.03 (3) 10.80		-	-		0.51 ± 0.01 (13)	9.49
M^{1-2}	2.11 ± 0.03 (8) 3.40		-	-		2.96 ± 0.01 (19)	1.85
M^{1-3}	2.98 ± 0.08 (3) 4.55		-	-		4.07 ± 0.02 (18)	1.63
M^{1-4}	3.55 ± 0.03 (3) 1.33		-	-		4.77 ± 0.03 (13)	1.86

CV is less than 11 throughout and usually less than 6 (Table 1). Following Simpson et al. (1960), this degree of variation indicates an unmixed sample, although Gingerich (1974) cautions against uncritical application of this absolute CV criterion and recommends greater emphasis on relative variabilities of different teeth. In approx-
imately 80% of measurements B. parvus has a lower CV than the Riversleigh sample, but the interspecific differences in CV are generally not great. CVs for B. triradiatus fall within approximately the same ranges as those for the Riversleigh and Recent specimens, but are derived from very few specimens and are therefore

FIG. I. Frequency hishgrams for some lower woh measuremens of Riverskigh Burhmy specimens. All measurements ininm.
non considered reliable. Total variation (as indi(ated hy CVs) suggests I species of Burramys in the Riversleigh sample spanning greater variation than the sample ol Recent B. parivs.

Where variation between taxa is small (as is likely with small-boulied taxit) it may be ubseured hy epigenetic morphological variation, by tooth wear or by measurcment error: metric diflerences between closely related taxia are most likely to be detected byexamining structures with the lowest levels of such variation. M_{2}, in the centre of the $\mathrm{P}_{3}-\mathrm{M}_{+}$tooth row, is in that sense the mosi lunctionally integrated ol these teeth: it may therefore be expected to be least variahle (Gingerich, 197t). Similarly, totat molar row lengthe may be more tightly conmelled than the lengths of individual motars. Mzdimensions and molar row measurenients (ineluding parial nolar fow measurements stich as M_{1-2} leng(h) are gencrally the least variahle meastrements in b. parvits and the Riversleigh sample; P3 length is also relatively constant (Table 1), Thus amalysis ol the Riversleigh sample was focused on P_{3} and M1-2, ajthough all nther measurements were enamined.

Prequency histograns lor some measurements are bimodall, while others are either unimodal of perhaps incipiently binodal. M_{1-2} length (Fig.

1C), with CV=3.37 is bimodat. M2 Iength (Fig. IB: $C V=3.72$) and P_{3} bucal height (Fig. If. $C V=5.64$) are considered bimodal, though not with certuinty. M1 length (Fig. IA; CV = 3.71) may represent a bimodal distribution but could equally he a sample trom a unimodal. normal distribution, P_{3} lengeh ($\mathrm{Fig} .1 \mathrm{D}: \mathrm{CV}=4.00$) and P_{3} posterior width (Fig. 1E; CV $=5.07$) distributions could each te described ether as having 2 or 7 peaks, or is representing single normal distributions. Kolmogorov-Smirnov Lilliefors lesas indicate that some ol the univartate distributions dilfer signilicantly trom normal (Table 2) and comparison with Table 1 shows that these include several with low variation. Thus univariate lrequency distributions hint that the satmple represents more than one population. but do not provide a basis for subdivision.

Bivariate plots (Fig. 2) suggest no clear divisions other than those evident in the univariate distributhons, such as the apparent bimodality ol M_{2} lengil (Fig. IB, 2B). They show thal spectmens Irom Systems B and C have overlapping distributions, but that for some measurements. specimens from System C sites are, on average, smaller than specimens from System B sites. This is so fir M_{1} length and P_{3} length (Fig. 2A, 2C. 2D) and to a lesserexient for M_{2} length (Fig. 2B),

FIG. 2. Bivariate plots for some lower tooth measurements of Riversleigh Burramys specimens. All measurements inmm.

TABLE 2. Column 1, Kolmogorov-Smirnov Lilliefors tests for normality. Probability (P) values below 0.05 indicate a difference from normality significant at the 95% level. Columns 2 and 3, mean values for Systems B and C respectively. Column 4, Students t-tests; P indicates a significant difference between Systems B and C. Abbreviations as for Table 1.

	Lilliefors Test (P)	Mean - System B	Mean - System C	T-test (P)
$\mathrm{P}_{3} \mathrm{~L}$	0.088	1.82	1.79	0.266
$\mathrm{P}_{3} \mathrm{AW}$	0.175	1.03	1.05	0.474
$\mathrm{P}_{3} \mathrm{PW}$	0.455	1.22	1.22	0.928
$\mathrm{P}_{3} \mathrm{MW}$	0.678	1.26	1.29	0.211
$\mathrm{P}_{3} \mathrm{LH}$	0.215	1.43	1.44	0.923
$\mathrm{P}_{3} \mathrm{BH}$	0.904	1.72	1.76	0.254
$\mathrm{M}_{1} \mathrm{~L}$	0.002	1.25	1.21	0.071
$\mathrm{M}_{1} \mathrm{AW}$	0.193	0.79	0.76	0.268
$\mathrm{M}_{1} \mathrm{PW}$	0.072	0.96	0.95	0.625
$\mathrm{M}_{2} \mathrm{~L}$	0.009	1.09	1.09	0.903
$\mathrm{M}_{2} \mathrm{AW}$	0.009	0.87	0.91	0.041
$\mathrm{M}_{2} \mathrm{PW}$	0.585	0.95	0.98	0.111
$\mathrm{M}_{3} \mathrm{~L}$	0.593	0.93	0.98	0.458
$\mathrm{M}_{3} \mathrm{AW}$	0.177	0.85	0.81	0.394
$\mathrm{M}_{3} \mathrm{PW}$	0.038	0.85	0.81	0.458
M ${ }_{1-2}$	0.054	2.32	2.27	0.226
M_{1-3}	0.001	3.25	3.16	0.529

FIG. 3. Specimens of Burramys from various sites at Riversleigh plotted on principal component axcs obtained using 11 measurements from P_{3} and M_{1-2} Eigenvectors recorded in Table 3. $\mathrm{X}=$ first principal axis, $Y=$ second principal axis, Z (perpendicular to page $)=$ third principal axis. Solid line encloses specimens from System B sites. Dashed line encloses specimens from System C sites, including Encorc Site. Dotted line excludes from System C 'aberrant' specimen QMF30104, indicated by arrow.
but appears not to be the case for P_{3} buccal height (Figs 2C). M M_{2} posterior width shows the opposite trend (Fig. 2B), whereby System C specimens are on average larger than System B specimens. Student's t-tests show these diflerences to be non-significant at the 95% level (Table 2), but a principal components analysis employing dimensions of P_{3} and M_{1-2} (Fig. 3, Table 3) confirms
that total variation is explained partly by System C specimens being smaller than system B specimens. Eigenvectors for component I are all positive (Table 3). indicating that this is a general 'size component'; specimens scoring high on the first component (i.e. falling further towards the positive, or right-hand side of the X -axis in Fig. 3) are larger than those to the lelt. Although there is considerable overlap between Systems B and C, the centre of mass of the System B distribution is further to the right than that for System C.
Specimens from Encore site (younger than System C, ?early late Miocene) cluster at one cxtreme of the System C distribution, with the exception of a single large aberrant specimen QMF30104 from Gag Site (Fig.3). In the System B-System C continuum (Fig. 3) the cluster of Encore Site specimens falls on the 'older' (System B) end of the System C spectrum.
Despite the apparent trend of mean difference between specimens lrom Systems B and C, specimens Irom both Systems are present in each of the apparent peaks of the univariate distributions (Fig. 1A-F). This suggests that the underlying structure of the sample is not simply anagenetic change tracked from the older System B sites to younger System C sites, though such may have occurred. The binodality of several of the lrequency histograms may reflect sexual dimorphism and/or 2 roughly contemporaneous taxa. This suggestion is also supported by data plotted against sites arranged in estimated stratigraphic order (Fig. 4A-F.) Although samples from individual sites are inadequate to compare withinand between-site variation statistically, variation between sites is only a little greater than that within Upper sitc, provenance of the largest sample. Caution is thercfore necessary when interpreting apparent between- or across-site trends (such

TABLE 3. Results of principal components analysis using 11 measurements of P_{3} and M_{1-2} of Burramys specimens from Riversleigh. Abbreviations as for Table 1.

Component	1	2	3	4	5	6	7	8	9	10	11
Eigen Value:	4.971	2.177	1.179	0.803	0.638	0.497	0.336	0.230	0.097	0.049	0.022
Percent	45.194	19.790	10.716	7.299	5.801	4.519	3.056	2.092	0.883	0.447	0.203
Cumulative percent.	45.194	64.984	75.699	82.998	88.799	93.318	96.374	98.466	99.350	99.797	100.000
Eigenvectors: $\mathrm{M}_{1} \mathrm{~L}$	0.304	-0.297	0.076	0.510	-0.328	0.126	0.172	-0.398	0.088	0.304	0.376
$\mathrm{M}_{1} \mathrm{AW}$	0.323	-0.178	-0.285	0.040	0.397	-0.500	0.507	-0.020	-0.033	0.188	-0.282
$\mathrm{M}_{1} \mathrm{PW}$	0.387	0.005	-0.265	-0.199	0.131	-0.356	-0.414	0.033	0.006	-0.188	0.623
$\mathrm{M}_{2} \mathrm{~L}$	0.209	-0.489	0.152	-0.278	0.293	0.353	-0.240	0.294	0.277	0.426	-0.060
$\mathrm{M}_{2} \mathrm{AW}$	0.203	0.368	-0.472	-0.204	-0.053	0.535	0.381	0.193	-0.138	0.152	0.213
$\mathrm{M}_{2} \mathrm{PW}$	0.362	0.150	-0.390	0.127	-0.107	0.168	-0.380	-0.299	0.338	-0.150	-0.518
M_{1-2}	0.324	-0.403	0.142	-0.106	0.051	0.290	0.099	-0.117	-0.507	-0.567	-0.111
$\mathrm{P}_{3} \mathrm{~L}$	0.363	0.015	0.179	0.117	-0.512	-0.184	0.118	0.666	0.169	-0.164	-0.117
$\mathrm{P}_{3} \mathrm{PW}$	0.188	0.344	0.215	0.617	0.510	0.146	-0.184	0.248	-0.204	0.018	0.016
$\mathrm{P}_{3} \mathrm{LH}$	0.322	0.303	0.313	-0.303	-0.219	-0.159	-0.198	-0.191	-0.468	0.461	-0.187
$\mathrm{P}_{3} \mathrm{BH}$	0.250	0.332	0.498	-0.258	0.211	0.056	0.313	-0.267	0.486	-0.218	0.112

FlG. 4. Riversleigh Burramys: she measures against stes in stratigraphic sequence (Archer er ill., 1989). Distances on horizontal ixis arbutrary. Sites: $1=$ White Hunter: $2=$ Creaser's Rampats: $3=$ Outasite: $4=$ RSO:
as size dectine over time) as being significant. Although site 8 (Fig.4) includes Ten Bags Site. Mike's Potato Pateh and Upper Site, most specomens are from Upper Site and these span the range ol variation al site 8 .

If two morphotypes are present they are both represented in Upper Sile (Fig.4). Muirhead (1994) demonstrated size-guilding comparable to that on Recent mammal communities imong 7 Upper Site bandicoot species separated on size; this is possibly due to competitive displacement of taxa that eat size-variable foods such as seeds or insects within a singte community. Thus. Upper Site probably represents a single diverse community and the 2 morpholypes of hurromys could be sexual dimarphs or sympatric taxa. We reject sympatry because of morphologecal consistency of specimens lialling near the patks in the M1.2 length distribution; the size dillerence between those peaks is 100 small (Roth, 1981) to represent 2 species in different niches at the sume level of it loond weh. The ratio of the second peak to the first (Fig. 1A-C) is 1.06, short of the oliencited cutoff value of 1.3. (Roth (1981) showed that the "constant ratio rule' is empirically unsubstantiated, but suggested that character disptacement is unlikely to be indieated by ratio values lower thatn 1.3.)

Challengmg the likelihood of cither sexual dimorphism or sympatry is the fact that some specimens are in the higher peak of apparently bimodal distributions for some measurements, but the lower peak for others; whereas other specimens remain in one peak or the other for all of most measurements. There appears to be no combination of features that can be used to subdivide the sampte; this is supported by the nultivariate analysis (Fig. 3) which dails to divide the sample. A general trend to declining sime through Systems B and C (Figs 2,3,4A,C) in evidem, hus some Encore Site specimens suggest reversal of the trend.

SUMMARY

Riversleigh Burrmmys specimens may represent iwo poputations. Patterns of variation also suggest a cfine of dereasing size through time: however, smatt sample sizes and uncertainty of relative ages limit the reliability ol this observa-
$5=$ Wayne's Wok: $6=$ Cimel Sputum, Neville's Ganden and Dirk's Towers: $7=$ Inabeyance; $8=$ Ten Bugs, Mihe's Potato Patch and Upper Site; $9=$ Kingaron Juw: $10=$ Gag: $11=$ Las Minute; $12=$ Main Sile; $13=J i m$ s Jaw; $14=$ Wang; $15=$ Encore.
fion. If two populations have been sampled, magnitude and distribution of variation suggest that these are males and females of 1 species. Extant populations of B. parvis are not dentally dimorphic (Brammall, unpubl), but their alpine habitat is far removed from the Miocene rainforest environmentat Riversleigh (Archeret al., 1989, 1991) so it is not possible to infer that Recent and Mincene Burramys share population structures. We recognise a single new species.

SYSTEMATIC PALAEONTOLOGY

Class Mammalia Linnacus. 1758
Supercohort Marsupialia Illiger; 181 I
Order Diprotodontia Owen. 1866
Superfamily Burtanyoidea Broum 1898
Fsamily Burramyidae Broom. 1898

Burramys Broum, 1896
Burramys brutyi sp. nov. (Fugs 5-9: Tables 1,4)
हTYMOHOGY For the late Arthur Bruty who, toEther whth his daughter Elaine Clarke, belped colleel many specimensund discovered Bruty \& the Beast Sitc. ain the Gag Platera

MATERIAL. Mosnype QMF30102 (Fig. S), a Feft dentary (DEN) with II, P1-3, M 1_{1-2} and alvenli for I2 and M3-4. The tip of I 18 missing, as are lie condylar. ungular and coronoid processes. Paratypes QMF301 76 (Fig, 6), RDEN with $\mathrm{P}_{2}-3, \mathrm{M}_{1-4}$, broken amerior m P_{2} and missing the ascending ramus and condylar, angular andeoronoid processes, QMF30091 (Fig. 7), Lmaxilla with $\mathrm{P}^{2-3} \cdot \mathrm{M}^{1-4}$ and palate medial tocheekteeth. Types Prom early to mid Miocene Upper Site on Godithelp Hill, Dsite Platean,

Other material: SYSTEM A - White Hunter Site. QMF23344, RM2; QMF23500, DEN with RP3, SYS TEM B - Camel Sputum Site, QMF20732, DEN with RM1, P3: QMF20735, R DEN-QMF20736, T.M ${ }^{2}$: QMF30090, maxilta with LP2, M , QMF30107. DEN with L1, P2-3, M1-2: QMF301 10, DEN with RI. P2-3. M1-2. Inabeyance Site: QMF30079. DEN with L.P3. Mi-3. Mike's Potite Patch Site: QMF20759, DEN wih LM 2 ; QMF20 $060,1 \mathrm{M}^{\mathrm{J}}$: QMF20761, P3or f^{3}. Neville's Garden Site: QMF2(1818 . DEN with $\mathrm{K}^{2} 3$. M1, QMF20748, LM2; QMF209(22, DFN with RII, P; M1: QMF23349, DEN with LP3. M1-2: QMF23376, DEN with RP3, Mt. QMF23511, DEN with RP3: QMF24261, maxilla wilh RP^{2-3}; QMF 30089 , maxilla with $\mathrm{RP}^{2-3} \cdot \mathrm{M}^{1-2}$ QMF30092, maxilla with RP^{2-3}. M1.4: QMF30113, DEN with RP3, M1; QMF30114. 1 R^{3}. QMF 30132 DEN with LP3, M1 2; QMF30271. RM, Qutasile: QMF2(1769, I- ISN: QMI 300 one. DEN with LII, P3, MI-2, RSO Site: QMF30081, DEN
wilf 1.P3, M1-3: QMF30084. DEN with RI_{1}. P3. M1. QMF30094, maxilla with RP2; QMF30140, L.P QMF30141, LP ${ }^{3}$: QMF30142, RP3. Ten Bags Site QMF23502, DEN with LPA, M1 Upper Site: QMF20774, DEN with RII: QMF20775 DEN with LII. P3: QMF20776, DEN with RP3: QMF20777. DEN with RM2; QMF20785, maxilla with RM ${ }^{\text {L-3 }}$. QMF20786, DEN with LM1 3, P3: QMF30787, maxillat with $\mathrm{LM}^{1}, \mathrm{P}^{2-3} ; \mathrm{QMF}^{20788}$, maxilla with L.M1 QMF30082, DEN with 1.P3, M1-2: QMF30083, DEN with $\mathrm{RP}_{2}-3, \mathrm{M}_{1-2 ;}$ QMF 30085 , DEN with L-11, P3, M1: QMF30086. DEN with R17, P_{2} 3, M1-2; QMF30087. maxilla with L^{32-3}. QMF30 0188 , maxilla wilh LP^{2-3} : QMF30091, maxilfa with LP ${ }^{2} 3, \mathrm{M}^{1-4}$ QMF30095. naxilla with RP3, M1-2; QMF30096, maxilla with 1. P3; QMF30097, maxilla with RP3; QMF30098, maxilla with RP3. M1, QMF30099, maxilla with RP3 QMF30101, maxilla with $\mathrm{LP}^{2-3} \cdot \mathrm{M}^{1-2}$: QMF30102 DEN with L1, P1-3, M $1-2$: QMF 30103 , maxilla with $L^{3}{ }^{3}, M^{\prime}$: QMF30106, DEN wilh RIT, P2-3: QME30111, DEN with LI, P2-3, M1: QMF3012. DEN with R1, P3; QMF3(0)17, DEN with RP3. M1-2: QMF301 18. DEN withRL_P3.M1: QMF30119. DEN with RM2 3: QME30120, DEN with 1P3, M1.2. QMF30121, DEN with LI1, P3;QMF30I22, DEN with L1. P3: QMF30123, DEN with LP3, M1-2; QMF30124, DEN with RP3. M1-3: QMF30125, DEN with RP3, M1: QMF30127, DEN with LI, P3: QMF30128. DEN with RP3: QMF30129, R DEN: QMIF30130, 30131, 1. DEN: (QMF30133, DEN with RP3, M1-2; QMF30138, maxilli with LP-: QMF30139, RP2; QMI $30146,30148,30149,30152$ LP_{3}; QMF $30147,30150,30154,30155,30179,30182$ $\mathrm{LP}^{3} ; \mathrm{QMF}^{2} 0151,30153,30174,30180,301 \mathrm{~B} 4 \mathrm{RP}^{3}=$ QMF30160, LM2: QMF30164-30167, LM QMF30168, $30173,30177 \mathrm{RM}^{1}$; (QMF30176, DI: with RP2-3, M1-4: QMF30181, 30183 RP3z QMF30185, $30190 \mathrm{RM}_{3}, ~ Q M F 30186, \mathrm{RM}^{2}$. QMF30187.1.1: QMF 30188, R11: QMF30189, RM2. Wayne's Wok Site: QMF20725, maxilla with Rp ${ }^{5}$ QMF20726. maxilla with RM ${ }^{1-2}$ QMF20737. maxillary fragment with RP3; QMF20738, DEN with RMI QMF20744, DEN with RM1. P3. QMF20745, DEN with LM2-3: QMF20746, DEN with RM1-2; QMF 22816, maxila will $\mathrm{RP}^{2-3} \mathrm{M}^{1}$: QMF30108, DEN with RP2-5, M_{1-2}; QMF30136, DEN with 1.P3, M1 Wayne's Wok 2 Site: QMF30100. DEN with RI 1. P3. M1-3: QMF30175, LP3 SYSTEM B OR C - Clen al Ages I Site: QMF20905, R DEN. Cleft of Ages 2A Site: QMF22772, maxilla with RP ${ }^{3}$. M^{1}. Cloft of Ages 4 Sitc: QMF 20767 R RP3: QMF20835 RP^{3} : QMF20836, RP3: QMF23200), R12 SYSTEM C . Encore Sitc: QMF20752, LM3; QMF20753, 1.P7; QMF20754, LM 1 , QMF'20904. DEN with RM12. P2 3: QMF23462, DEN with RM1-2, P3, QMF24334. DEN with LMi-2; QMP24424, DEN with LM1; QMF24426. DEN with $\mathrm{LI}_{1}, \mathrm{P}_{3}, \mathrm{M}_{2}$: QMF24552. RP': QMF24727. DEN with LI, P3, M1-2 Gag Site: QMF30078, DEN with RP3. QMF30093. maxilla with LP3. QMF30104. DEN wilh L1, M1-2, P: QMF3013. LDEN QMF30135. DFN with I.P3, MT:

FlG. 5. A-C. Burramys brutyi n. sp. holotype QMF30102. Leli dentary with 1। P2.3 M1.2 in (A) buccal, (B-B') ocelusal stereopar and (C) lingual views. D-F, Burramys bruryi paratype QMF30091. Left maxilla with $\mathrm{P}^{2 \cdot 3}$ M^{1-1} in (D) buceal. ($E-E^{\prime}$) occlusal stercopair and (F) lingual views. Scale $=2 \mathrm{~mm}$.

QMF30137, LP ${ }^{3}$, QMF30156, LM2: QMF30157. RM^{1}; QMF30158. RM1; QMF30161. LM ${ }^{3}$. QMF30170, RP3, QMF30171, RP3. Henk's Hollow Site: QMF30172, LP ${ }^{3}$. Jim's Jaw Site: QMF30178, DEN with RP3. Kangaroo Jaw Site: QMF30115, DEN with RP3, M1-2. Last Minute Site: QMF30105, DEN with R11, Mi-3. P2-3; QMF30116, DEN with RP3. M1.2: QMF30143. LP3; QMF30144, RP3:

QMF30145, LP ${ }^{3}$ apicall fragment; QMF30162. RM^{3} QMF30163, RM ${ }^{3}$: QMF30169, DEN with RP3, M1 Main Site: QMF30109, DEN with RP3. Ringtail Site: QMF20756, RP³, QMF20757, maxilla with RM ${ }^{1-2}$ P^{3}. Wang Site: QMF20763, maxilla with LP ${ }^{3}$? QMF20766, DEN with RM1, P3: QMF30272, RP3 AGE UNCERTAIN - Creascr's Ramparts Site: QMF20771. LP3.

F゙lG. 6. Burvanys hrufy paratype QMF30176: occlusal steropair of right dentary fragment with P_{2-3} and M_{1-4}. Scale $=2 \mathrm{~mm}$.

DIAGNOSIS. Diflers from B. trirudianus and B. poriws in being smaller, in having upper and tower plagiaulacoid P3 smaller and with fewer (5-6) cuspules and associaled ridees and in having 2 -roted upper and lower Mt. Dentary and mexilla more rohust than in B. paryos, with smaller palatal vacuities, shorter $1_{2}-P_{2}$ interval and less reduced posterior molars. P_{3} with liareer crown and larger posterior root than that of B. wakefieldi and diverging less lrom anteroposterior molar row axis. P1.2 double-rooted; singlerooted in B, wakefeldi. Distinguishabic from B. wakefied di and B. parvus by Ms cusp morpholagy: protoconid more lingual in B. wakefied than B. parvor ot B. brutri; metaconid mote anterior in B. parves than B. brurgi or B. wahefieldi.

COMPARATIVE DESCRIPTION. The dentary of B. hrmyi is suhequal to that of B. wakefielde in size and shape. Both are more robust than that of B. parius but slighty less so than that of B. riradians. The leading edge of the ascending ramus of B. bratyi is considerably more rohust and rises at a steeper angle from the horizontat axisol the dentary than does that of B. parrus, but not quite as steeply as that of B. trimalumus. The $1_{2}-P_{2}$ interval is shorter in B, brumy than in B. parvishut is not as short, relative to the lengh of the ramus, as that of B. trirculiatus.
Lowerdentition. II is long, slender and procurnbent, with the tip curved upwards and slightly twisted. It is stightly less procumbent in B. brutvi than in B. parves. The crown af 1 is trasilly atmour the same dorsoventral thichness in A. brmsia and
B. patvus hur a litle thicker in B traradiutus. I, of B. brungi thins atruptly ahou half way along its cxposed Iength. With the anterior hall of the footh heing narrower than the posterior haff. In lateral view If of B. brutyi is nore curved than in the other species.
13 has not been identified in B. brutyi, is wakefteldi or B. miradians. In B. parves $]_{2}$ is small ind single-roored, inserting into a shallow alveolus directly behind the posterior alveulat margin of l_{1} lus crown inclines forward to overlie: 1 posterobasally. fin some specimens of t3. hrmini there appears to be the remnant of a small alvenlus in the fragite region between I_{1} and P_{I}. suggesting a smail, single-rooted I_{2}.
P_{1} is small, 2-rooted and cap-like, the crown swelling beyond the roots in all directions. There is a minor ridece along the anteroposteriot axis al the tooth, with the crown sloping avaly from the crest on each side tow ards the linguat and huce: margins respectively. In dersal view it is almont circular in oulline being slighty wider than long. The crown dees notextend as far beyond the ronts posteriorly as it does in ather directions. In B3. panves the crown is shorter and flater than in B. brufyi and is also procumbent, riwing slightly an its anterior end to overlie the posterior end of 12 : it is ovoid in dorsal view (slightly Jonger int teroposteriorly and ins poslerior end is reducel.

The antenor root of P_{1} insents anterohuccal to the posserior root, The posterior alveolus is closer to the anterior alveotus of P_{2} than it is to the anterior alveolusur P_{1}, inserting slightly lingually and anterior to the anteriors alventus of P_{2}. The septum separating the posterior alveolus of P_{1} and the anterior alveolus of P_{2} frequenty breaks down so that they form a single cavity. In some specimens, therefiote, thete may appear tw he only three alvedi in the region which hid hoen orecupied by the 4 roots of P_{1} and P_{2}. Even with the septum intaet, the arrangement of alveoli might suggest that the posterier alveolus of P_{1} and the anterion alveolus of P_{2} belonged to the same tooth. Whereas in B. bruty the alveoli ol P_{1} and P_{2} are closely but unevenly spaced, in B parnus the 5 itveoli of 12: P_{1} and P? are evenly spaced and in the adull animal there is a small exal between P_{1} and P_{2} lin subadult or younger inimals the teeth are closer together).
P_{2} is similar in shape hut a little larger than P_{1}. The slight anteroposterior crest lies at an angle (lingual posteriorly) across the alveolar margins, directly above an imaginary line joining the cenwes af the P_{2} alventi. Posteriorly the crown extends beyond and pises above the ford.

FIG. 7. Lower cheekteeth of B, brinvi in occlusal view $\mathrm{A}-\mathrm{C}, \mathrm{QMF}$ 30102. $\mathrm{A}, \mathrm{LP}_{3}, \mathrm{~B}-\mathrm{B}^{+}, \mathrm{LM}_{1} . \mathrm{C}-\mathrm{C}^{\prime}, \mathrm{LM} \mathrm{I}_{2}$. D-D`RM3 of QMF30100. E-E', RM 1 of QMF30176 B-E stereopairs. Scale $=1 \mathrm{~mm}$.
teminating in a small cuspule and abuttmg P_{3}. Anteriorly, the crown extends slightly beyond the root. Lingually and buccally the crown swells out and lalls away to a rounded point on each side. The buccal, ventral apex is slighlly higher and more anteriorly located than the lingual apex, so

FIG. 8. Left upper chechiceth of B. brury paratype QMF30091 in occlusal view. A, $\mathrm{P}^{3}, \mathrm{~B}-\mathrm{B}^{-}, \mathrm{M}^{1}$. C-C' $M^{2} \cdot D-D^{\prime}, M^{3-4} \cdot B-D$ stereopairs. Scale $=1 \mathrm{~mm}$.
that the crown is somewhat twisted. In B. parius P_{2} is larger and relatively longer, with a crown that extends lurther beyond the roots, particularly anteriorly, giving the anterior end of the tooth a shelf-like appearance in lateral view. The crest is less clearly defined than in B. bruryi and approximately parallel to the axis of the $\left[2-P_{2}\right.$ interval.

The crown of P_{2} shows less lingual-buccal asymmetry than in B. brutyi. The posterior end of the crown rises higher and more steeply than in B. brutyi with a distinct hump above the posterior root of the tooth, posterior to which the crown increases only slightly in height. The P_{2} of B. triradiatus is similar to, but larger than, that of B. bruyi. It is wider but shorter than P_{2} in B. parvis and almost circular in dorsal view. Although it protrudes beyond the roots in all directions, it is flatter than in B. brutyi and B. parvus. As with B. brutyi, the buccal side is displaced ahead of the lingual side and as with B. parvus, in lateral view the crown has an anterior 'lip'. The anteroposterior crest is poorly developed. A P_{2} (NMV P180016) assigned to B. triradiatus by Turnbull et al. (1987) is considerably larger than and different to P_{2} in the Holotype. It is 1 -rooted, in contrast to P_{2} in the Holotype, which has 2 or 3 roots. NMV P180016 could possibly be a B. triradiatus $\mathrm{P}^{2} . \mathrm{P}_{2}$ is not known from B. wakefieldi but appears to have been 1 -rooted.

The plagiaulacoid crown of P_{3} is longer and taller in B. brutyi than B. wakefieldi, larger in B. parvus and larger again in B. triradiatus. P_{3} of B. brutyi has 5 or 6 dorsal cuspules and associated ridges. The anterior edge of P_{3} rises vertically in B. brutyi, curving back dorsally to an almost horizontal serrated crest. The anterior profile is straight in B3. wakefieldi, but leans backwards slightly as it rises to an also horizontal crest. The anterior root descends from the crown more anteriorly and buccally in B. wakefieldi than in B. brutyi. In B. triradiatus and B. parvus, the anterior profile of P_{3} curves forward then backward as it rises, giving the corrugated tooth a "fanned" appearance and increasing the length of the dorsal edge. In B. triradiatus the anterior root curves forward slightly as it rises, with its convex prolile continued by the crown. $\ln B$. parvus the root rises vertically to the base of the crown, then the crown expands gently forward. The P_{3} blade is slightly concave lingually and convex buccally. The exposed portion of the anterior root of P_{3} protrudes further beyond the jaw margin buccally in B. brutyi than in B. parius. It is also in high relief in B. wakefieldi and B. triradiatus. In B. parvus, the postcrior end of the crest has shifted lingually and backwards (relative to its position in B. brutyi). Thus the anterior angle between the long axis of the P_{3} crest and the molar row is greater in B. parvus than B. brutyi, as is the angle between this crest and its underlying roots. The posterior root of P_{3} is also smaller buccally in B. parvus than in B. bruty and is smaller again in B. wakefieldi
because the posterior end of the crest and hence the direction of the bite force in that region has shifted lingually, The anterior end of P_{3} is more attenuated in B. parvus than in the other species. Some specimens ol B. brutyi have cracks running from the dorsal cutting edge basally and backwards, stopping near the base of the crown. P3s of each of the other species have similar cracks. They are particularly frequent and extensive in B. triradiatus. The P_{3} of B. triradiatus also generally show more wear on the anterior end of the dorsal cutting edge than is evident in the other species.
Lower molars are bunodont in Burramys. They differ mainly in size, M_{1} cusp morphology and degree of reduction of M. Some unworn molars of B. brutyi are slightly crenulate, unlike other species of Burramys, but since crenulation is rare in B. brutyi and since molars ol the other lossil species are poorly known, this feature is nol regarded as diagnostic. The molar gradient is greater in B. parius than in other species.
M_{1} is approximately the same size in B. brutyi and B. wakefieldi and is larger in B. parvis. It has two roots in each of these species. M_{1} is not known from B. triradiatus but judging from its alveoli was 3 -rooted and relatively small, with $\mathrm{M}_{4}<\mathrm{M}_{1}<\mathrm{M}_{3}<\mathrm{M}_{2}$. The trigonid rises more stecply against P_{3} in B. brutyi and B. wakefieldi than in B. parvus, with the protoconid taller in comparison to the metaconid. P_{3} and M_{1} are therclore more disparate in height in B. parvus than in B. brutyi or B. wakefieldi. Posteriorly, the crown extends further beyond the roots in B. parvus than in the other specics. In B. wakefieldi the entoconid is particularly tall. In all species, the M_{1} postmetacristid is continuous with the longitudinal axis of the dorsal crest of P_{3}. In B. brutyi and B. parvus the premetacristid swings buccally to meet the postmetacristid, creating a disjunction between the P_{3} crest and the lingual crests of M1. The postprotocristid/premetacristid angle is more obtuse at the metaconid in B. brutyi than B. parvus because the metaconid is more posteriorly positioned in the former than the latter. The break in the $\mathrm{P}_{3}-\mathrm{M}_{1}$ blade system is therefore, longer in B. brutyi than in B. parvus. In B. wakefieldi the protoconid is more lingually positioned so that the crests associated with the P_{3} and M_{1} protoconid, metaconid and entoconid form an almost straight line.
M_{2} is smaller in B. brutyi than B. triradianus or B. parvis. M_{2} ol the latter is slightly longer and narrower than that of B. triradiatus. It is proportionately shorter in B. brutyi than B. parrus and

FIG. 9. B. brutyi sp. nov. A-C, left P_{1-2} with I_{2} alveolus and anterobasal portion of P_{3}. holotype QMF30102 in ($\mathrm{A}-\mathrm{A}^{\prime}$ ') lingual, ($\mathrm{B}-\mathrm{B}^{\prime}$) occlusal and (C-C') buccal views. $\mathrm{D}-\mathrm{D}^{\prime}$, Ieft P^{2-3} and anterior portion of M^{1}, paratype QMF30091 in lingual view. A-D stereopairs. Scale $=1 \mathrm{~mm}$.

TABLE 4. Measurements of B. brutyi types. From holotype where possible. M3-4 lengths and widths, M_{1-3} and $\mathrm{M}_{\text {1-4 }}$ from paratype QMF30176. All upper tooth measurements from paratype QMF30176. Abbreviations as for Tablel.

Lower teeth	
$\mathrm{P}_{1} \mathrm{~L}$	0.48
$\mathrm{P}_{1} \mathrm{MW}$	0.55
$\mathrm{P}_{2} \mathrm{~L}$	0.62
$\mathrm{P}_{2} \mathrm{MW}$	0.64
$\mathrm{P}_{3} \mathrm{~L}$	1.76
$\mathrm{P}_{3} \mathrm{AW}$	1.07
$\mathrm{P}_{3} \mathrm{PW}$	1.23
$\mathrm{P}_{3} \mathrm{MW}$	1.31
$\mathrm{P}_{3} \mathrm{LH}$	1.45
$\mathrm{P}_{3} \mathrm{BH}$	1.76
$\mathrm{M}_{1} \mathrm{~L}$	1.21
$\mathrm{M}_{1} \mathrm{AW}$	0.83
$\mathrm{M}_{1} \mathrm{PW}$	0.97
$\mathrm{M}_{2} \mathrm{~L}$	1.10
$\mathrm{M}_{2} \mathrm{AW}$	0.88
$\mathrm{M}_{2} \mathrm{PW}$	0.94
$\mathrm{M}_{3} \mathrm{~L}$	0.98
$\mathrm{M}_{3} \mathrm{AW}$	0.85
$\mathrm{M}_{3} \mathrm{PW}$	0.80
$\mathrm{M}_{4} \mathrm{~L}$	0.66
$\mathrm{M}_{4} \mathrm{AW}$	0.64
$\mathrm{M}_{4} \mathrm{PW}$	0.50
M_{1-2}	2.30
M_{1-3}	3.18
M_{1-4}	3.83

Upper teeth		
$\mathrm{P}^{2} \mathrm{~L}$	1.01	
$\mathrm{P}^{2} \mathrm{MW}$	0.60	
$\mathrm{P}^{3} \mathrm{~L}$	1.91	
$\mathrm{p}^{3} \mathrm{AW}$	0.92	
$\mathrm{P}^{3} \mathrm{PW}$	1.21	
$\mathrm{p}^{3} \mathrm{MW}$	1.21	
$\mathrm{p}^{3} \mathrm{LH}$	1.56	
$\mathrm{P}^{3} \mathrm{BH}$	1.64	
$\mathrm{M}^{1} \mathrm{~L}$	1.11	
$\mathrm{M}^{1} \mathrm{AW}$	1.17	
$\mathrm{M}^{1} \mathrm{PW}$	1.21	
$\mathrm{M}^{1} \mathrm{MW}$	1.39	
$\mathrm{M}^{2} \mathrm{~L}$	0.96	
$\mathrm{M}^{2} \mathrm{AW}$	1.13	
$\mathrm{M}^{2} \mathrm{PW}$	0.89	
$\mathrm{M}^{3} \mathrm{~L}$	0.82	
$\mathrm{M}^{3} \mathrm{AW}$	0.90	
$\mathrm{M}^{3} \mathrm{PW}$	0.66	
$\mathrm{M}^{4} \mathrm{~L}$	0.64	
$\mathrm{M}^{4} \mathrm{AW}$	0.67	
$\mathrm{M}^{4} \mathrm{PW}$	0.40	
M^{1-2}	2.07	
M^{1-3}	2.90	
M^{1-4}	3.51	

very slightly shorter than B. triradiatus. M_{2} is not known for B. wakefieldi. It has two roots in each species except for B. triradiatus, in which it has three. In a few ($<5 \%$) of B. brutyi specimens the anterior alveolus has, ventrally, a septum (or remainder thereof) subdividing it basally into 2 compartments, suggesting á root bifurcated at its tip. This condition may be intermediate between the 2 - and 3-rooted conditions. In B. brutyi and B. parvis there is frequently a small cuspid halfway along the lingual margin of the crown, at the junction of the postmetacristid and the preentocristid. Sometimes the cuspid is not clearly differentiated from the postprotocristid. It is the same size in both species even though the tooth is larger in B. parvus. The cuspid is not evident in B. triradiotus, although there is a small dorsal protuberance on the anterior end of the preentocristid of NMV P158628. In each species the postprotocristid curves lingually from the protoconid before straightening and running approximately parallel to the tooth axis until interrupted by the transverse hypoconid-entoconid lophid. Postprotocristid curvature is less extreme in B.
brutyi than the other species. The cristid obliqua lies parallel to the looth axis, forming a posterobuccal cingular pocket between itself and the postprotocristid. In all species the buccal cusps are bulbous. The hypoconid causes the posterobuccal comer of the tooth to extend beyond its basically rectangular outline. The lingual cusps are slightly ahead of the buccal cusps, skewing the sides of the tooth slightly. They are more crescentic than the buccal cusps and, together with their associated erests, form a bladelike structure.
M_{3} is similar to, but smaller than, M_{2}. Cusps are lower and basins shallower, with the crown surface showing more wear than $\mathrm{M}_{2}, \mathrm{M}_{3}$ is smaller in B. brutyi than the other species, is slightly larger in B. triradiatus than B. parius and is not known from B. wakefieldi. Interspecific comparisons of M_{3} are as for M_{2} except that in B. brutyi and B. parvus, but not B. triradiatus, the lingualbuccal skew is slightly more pronounced than in M_{2}. In all species M_{3} is slightly shorter anteroposteriorly than M_{2}. In B. triradiatus the protoconid and hypoconid of M_{3} are subequal whereas in M_{2} the hypoconid is larger. In M_{3} there is a distinct cleft dividing the rounded protoconid and hypoconid.
M_{4} in B. brutyi and B. wakefieldi has 2 roots, whereas in B. triradiatus it has 3 and in B. parviss 1. While most specimens of B. brutyi have 2 roots or alveoli for M_{4}, some have 3 and a few had I root. Such variation is not evident in the B. triradiatus or B. parvus. M_{4} is not known for B. wakefieldi or B. iriradiatus but the alveoli of B. triradiatus suggest that it was far less reduced than in B. parvis and possibly less reduced than in B. brutyi. M4 is low-crowned, with low cusps which quickly wear down. It is smallest and most degenerate in B. parvus,

Upper teeth of Burramys anterior to P^{2} have not been recognised from Riversleigh or Hamilton, so discussion of the upper dentition will be limited to P^{2-3} and $\mathrm{M}^{\dagger-4}$. Skull fragments and upper teeth of B. wakefieldi are unknown. The upper dentition of B. triradiatus is known only lrom isolated teeth.

Maxilla. Palatal vacuities are smaller in B. brutyi than B. parvus. The anteroventral opening of the infraorbital foramen is also smaller (and less round) in B. brutyi, as are foramina in the alisphenoid and squamosal. Known bones of the skull are more robust in B. bruryi than in B. parvus. In both species the maxilla is swollen around the P^{3} alveolus, between the lachrymal
and the intraorbital formen. This swelling is nore extensive in B. parvos than B. brungs with P3 and the amerior limit of the molar row beginning further forwaral in the living species. In ventral view. the anteromedial limit of the oygomatte arch in B. bruty is level with a point mid. way between the pronocone and protoronule al $\mathrm{M}^{\text {d. In }}$ B. parmer it is midxay heween the metarombe and protocone of M1 The upper molar eradient is steeper in B. partus than in the ohter species, In As, brumy fle molat wow rotates buccally arruse the mailla lrom frum tu biech. (o) a greater degree than necurs in B. parvas.

Upper dentition. P^{2} of B . |hamsi is 2 -rooted and sumblar to, alllough slightly larger than. P2. A weah cres rums from a suall cuspule in the highest point on the crown, which is midway atong the ransed pesterior edge to the anternor base of the conwn. lingually and buccally the crown sopes thwards the rexts. The base of the crown expands lingually over the pasterion ront extending the crown oulline posterolingually. This swelling is Less pronounsed in B. paryus. in crown view the tooth as teardrop-shaped, being just wider than the ransverse dambeter of the antenor bom. In B, pariws by contrats, the ?rooted P^{2} crown expands heyond the rnots lion its whote length (more so positeriorly than anteriorly). In both species the crown is parallet to the edge of the medially inclined pabate. Iorming in angle with 1^{32} and the molas kow. Altherght Γ^{2} fon B. rimadians has not theen identilied, the small.
 by Jurnhull el al. (1987) to he a P2, is. similar k P^{2} s of B. hrumi and B. parmos and is merpreted here to be r^{2} ?

In B. brunid. as in B. trirudiatus and B. parmus. P^{3} is similar to P_{1}. Reyarding P^{3} anternposterion
 dursuventally shortest in B. Grufyi and slighty tatle in R. srirudianus than R parions. 1 i is similarly shaped in all three species hut in B. brutyi the crown decreases in anteroposterior length from base in ocelusal edge, whereas in B. parvers and B. miredianus the ventral edge of the blade is at least an long as hase of ale crown. In anderior view, P' of B. hrumy is as wide as that of B. parvers at its base. but lapers more rapudy and is bence thicker at the occlusal edge and more rohust in appearance. In B. tribulianus the tonth is thecker benally than in B. promers tecemse of a broater Engulum (sec below). It is thicker for most of its hegght luot tapers to almostas thin an edge as does B. purvis p^{3}. Whereas the dentary turns medially
immediately anterior to P_{1}, the maxilla of Burrumbs lums medially only anterior in $\mathrm{P}^{22} . \mathrm{P}^{3}$ therefore dues not appear to fum out from the molar row as much as P_{3} : its crest is approximately parallel to the molar row. Consequently it dexs ne have th reract anternhasally (as wilh fa) to insert into the trone and unlike P_{3} its anterior edge, seen in lateral view. may appear to extend slighly forward lasally. Prohably as a consequence ol this, the bucial-convexity/lingual-oncavity is. in all species. less promounced ltan in Pr. In ucclusal view, P^{3} of B. Armervi is hasically rectangular, but with the anternor cod curving 10 a rounded puint and the posterion eniners rounded. In B. parves and B. triradiatus it is more ovard. the anterior end again berng a little marrower than the poserior end, and pointed. There is a narrow cingulum, poorly developed at the ankeriorent, alongethe lingual and buccal sides ar the crown. The cingulum is very wesk in B.
 sienificantly teller developed in B. rirodiatus. In this species the cingulam is sometimes emphasised lingually hy a vertical wear facer hat terminates atruplly at the cingulano. In fis traradiutus and to sume extem in B, parows the second ind sometimes third lingual ridges merge inks the lirst which forms a curb that ares bick toward the cingulum. 'This curb is less prominen in B. hrufy! in which ridges spproach the cinguluns without mergmg.

In all specics M^{1} has 3 mots - a larger lingual and 2 smaller buccal sools. In B. brutyi M^{\prime} is willer tland is is long. In R. parvas and B. rimadians it is aboun us wide as lenng. In all 3 spectes there is a swelling anternthical to the paracone swe that the anterobuceal corner of the Woth is a little larger than the pusternbuecal cor ner. In B. bmyyithere in a distinct buccal cingukar basin or shell at the intersection of the posstparacrista and the premetacrista catending lack to the level of the metacone and lorward nearly as lar as the paracone. It is sometimes delimited anteriorly by a mallerest running buccally from the paracone. In B. partus this pocket is little more llam a stoping cingular shelf. In B. triradiatus it is a narrow cingulum lollowing the rounded paracone and meticone buccially (Turnbull et all., 1987. lie. SA), The ectoloph of B. brusi is roughly paralle to the anteroposterion axisul the thoth. As with B. partis, the paratione is significandy larger tham the other cusps. teaining its height as the toxth wears. The protuconute and metacombe are less developed in B. hravi and B. Irrctedienses than in B. patros. Hence in
occlusal view, M^{1} of B. brutyi is basically rectangular, with the anterior and posterior ends of the tooth parallel. In B. parvus it is longer and more curved lingually than buccally because of the inflated protoconule and metaconule. In occlusal view there is an indentation between the paracone and metacone in B. brutyi and B. triradiatus, whereas in B. parvus the crown outline between those cusps is almost straight.
M^{2} is rectangular in B. brutyi (shorter anteroposteriorly) and considerably smaller than in cither B. triradiatus or B. parvus, in both of which it is about as wide as it is long. In all species it has 3 roots and a small cingular pocket anterobuccal to the paracone, bounded lingually by a short preparacrista that runs perpendicularly from the anterior edge of the tooth to the paracone. The buccal cusps and their associated crests are bladelike in comparison to the more rounded lingual cusps. In B. triradiatus the buccal cusps are more pointed and the lingual cusps more rounded than in B. brutyi or B. parvus. The transverse lophs are also taller and consequently the cingular and central basins deeper. The protocone and metaconule are more approximated than in other species, as are the paracone and metacone. In unworn specimens of B. parvus the relative cusp heights are as reported for B. triradiatus (Turnbull et al. 1987): protocone exceeds metaconule while paracone is subequal to the metacone. In worn $\mathrm{M}^{2} \mathrm{~s}$ of B. parms the lingual cusps are lower so that the paracone exceeds the metacone which exceeds the protocone which is subequal to the metaconule. This pattern of cusp wear appears to be the same in B. brutyi.
M^{3} of B. brutyi is similar to M^{2} but is smaller, proportionately a litle narrower (because the lingual cusps are less bulbous) and with cusps a little lower. The posterior cusps are more reduced than the anterior cusps and the metacone, in particular. is relatively lower. The metaconule is slightly further forward than in M^{2} so that the posternlingual corner of the tooth is more rounded in occlusal view. This feature is similar to the condition in B. triradialus and, even more so, to the condition in B. paryus. The transverse lophs, preand post-cingula and their associated basins soon wear down to the level of the central basin. M^{3} is most reduced posteriorly in B. parvus and least reduced in B. triradiatus.
M^{4} is larger, both relative to other molars and absolutely, in B. brutyi than in B. parvus and is also less posteriorly reduced. The posterior cusps, especially the metaconule, are markedly reduced. The anterior cusps, although low and rapidly
worn, are distinct in unworn teeth and remain distinguishable until late wear stages. Although the cusps, their associated crests and basins are low and quickly levelled, worn $\mathrm{M}^{4} \mathrm{~s}$ ol B. brutyi shows more surface morphology than those of B. parvus. in which even newly-erupted $\mathrm{M}^{+} \mathrm{s}$ are almost featureless. M^{4} has 3 roots in B. brutyi. Ride (1956) reports a double-rooted M^{4} in B . parvus but it appears Irom the specimens examined that the basic condition in B. parves is a 3 -rooted M^{4}, perhaps with a reduced number of roots in some specimens.

INTRAGENERIC PHYLOGENETIC ANALYSIS

Thirty-five characters were investigated for their potential to contribute to an analysis of the relationships between species of Burramys. Cercartetus namus, C. lepidus, C. caudatus and C. concinnus were used as the primary outgroup since Burrcmus and Cercartetus are sister groups (Archer, 1984; Aplin \& Archer, 1987). Trichosurus caninus, T. arnhemensis, T. vupecula, Spilocuscus maculans and Phalanger carmelitae were used as a secondary outgroup because DNA hybridisation indicates that burramyids and phalangerids are sister groups (Springer \& Kirsch. 1989). Character numbers refer to Table 5; unnumbered characters are not included in the analysis.

1. Body size. Jaw lengths suggest that B. bruyi and B. wakefieddi were of similar hody size. B. triradialus and B. parwas are larger and approximately the same size as each other. Cercarletus lepidus, the smallest of its genus, is also regarded as the most primitive (Archer, 1984). Phalangerids are larger than burramy yids but this is likely to be a derived condition: diverse taxa exhibit a general tendeney for increasing body size over time (Maurer et al., 1992). The small size of C. Lepidus suggests that larger size is apomorphie within Burramys. In our diseussion of character states, a morphological feature is regarded as large only if its greater size is independent of increased body size.
2. Robustness. The dentary and maxilla of B. parvus are more slender than those of other Burramys, despite being larger. All speeies of Cercurtetus have similiarly slender jaws. Trichosmrus, Spilocuscus and Phalanger are more robust than Cercartetus or B. parsus, but being several times larger than burramyids. they do not form a useful eomparison in this regard. The slenderness of Cercarletus suggests that increased robustness is apomorphic in burranyids.
3. Length of $1_{2}-P_{2}$ interval. The interval occupied by $\mathrm{I}_{2}, \mathrm{Pt}$ and P_{2} is longer relative to jaw length in B. pam

TABLE 5. Characters and character pularities for intrageneric phylogenctic analys of Burramys species. Plesiomorplaic state denoted by 0 : ? indicates that information on chameter is unavailable. A and B indicate alternative derived states.

Character	B. brutyi	B. wakefieldi	B. trimadiatus	B. parmus
1 Body size	0	0	1	1
2 Robusticity	1	1	1	0
3 Length of $\mathrm{I}_{2}-\mathrm{P}_{2}$ interval	1	1	2	0
4 Length of I_{1}	0	?	2	,
5 Basal thickening of I_{1}	1	?	1	0
6 Number of roots P_{1-2}	0	1 A	1 B	0
7 Arrangement of alveoli P_{1-2}	1	?	?	0
8 Size of P_{3}	1	1	2	1
9 Size disparity between P_{3} roots	1	3	2	2
10 Number of ridges P_{3}	1	1	3	2
11 Curvature of P_{3} anterior profile	0	0	1	1
12 Concave/convex P_{3}	0	0	1	1
13 Arched dorsal edge P_{3}	0	0	1	2
14 Divergence of P_{3} from molar row	1	3	2	2
15 Transverse compression P_{3}	1	1	3	2
16 Distinct M_{1} talonid and trigonid	1	0	?	1
$17 \mathrm{M}_{1}$ protoconid position	0	1	?	0
$18 \mathrm{M}_{1}$ metaconid position	0	0	?	1
19 Relative length lower molars	2	2	1	0
20 Neomorphiccuspid	1	?	0	1
21 Loph(id) development $\mathrm{M}_{2-3}, \mathrm{M}^{2-3}$	1	?	0	1
22 No. roots M_{1-3}	0	0	1	0
23 No. roots M_{4}	0	0	1 A	1 B
24 Reduction of M_{4}	1	1	0	2
25 Size of maxillary vacuities	0	?	?	0
26 Anterior limit P3	1	?	?	0
27 Rotation of upper molar row	1	?		0
28 Inflation of lingual cusps M^{1}	0	?	0	1
29 Lingual displacement of M^{3} paracone	0	?	0	1

than in A. brumi or B. trimadiotus, with B. triradiatus the shortest. This regin is incomplet in the holotype (1)B. whelreldi but appears lube ahout the same length as in B. brand This interval is relatively long in Cencertemes and phalangerids, indiciting that this is the plesomorphic state.
4. If length. If is longer in B. parmes than B. bruyi and longer again in B triradiums (umhnown in B. wakefieldi). It is shorter in Cercartome thin Barrams: and is shoner in phalangerids. A long If is regarded as apomorphis
5. Thisekened base of II, Io B. bewer and B. triradientes II is thich basully (bicker in B. iriotodiams) and immediately begins to taper; approximately hall way atong the exposed portion of the tooth it thins markedly then amenuates to the tip. In b. patwes I tapers grat ually whthout marked reduction at at purticular point. In Catartems. Trichaverns. Spilocusens and Phatanger If dees nut change suddenly in diameter. sugesting that it basally thickened If is apomorphic.

Shape of PI. PI is not known lim B. wethefictele or B.
armadians, In B. brmap it is small, rounded and similar to P_{3}. In B. namms P_{1} is internediate between the cap-like P_{2} and the slighty clongate, procumbent I_{2}. In C. coudulus and C. lepidus P_{1} and P_{2} are both bulton-like and upright: in C. manes and C. concimms Piresembles I? almost as much as P2. Trichosurns and Phahuger species have extensive dastemata. taching P_{1} and P_{2} analogous to those of burramyids. It is therctore unclear which state of l'p is more plestomorplie and although this character may be phylogenetcally sigmficant, a subulatory polarity assigenment cannot be made.
6. Number of roos P_{I} and P 2 . Burrmus hami and $/ \mathrm{B}$. parves have double-rooted P_{1} and P_{2}, Buratma Pruruliamshas a triple- rooted P_{2} and double-or triplerooned P!: the number of rooss is not cleat due to damage mitheavailablematerial PI and Pzeachappear Io hive been single-routed in R. wakflikhli. P1-P2 of Certarternspossess sometumes one and sometimes iwo roots. P1-2 of Trichusums and Phatonger are eisher extemely reduced or absent. Outgroup amalysus does not resolve the polarity of this character. The nomal marsupial premodia condition is two-rooted so this is
taken to be the plesiomorphic condition. Burrauys wakefieldi and B. triradiams are interpreted as having alternative derived states.
7. Arrangement of P_{1-2} alveoli. In B. parnus the alveoli of P_{1-2} are in a straight line between l_{2} and P_{3}. In B. brutyi the anterior alveolus of P_{2} is lingual to its posterior alveolus and the posterior alveolus oll ${ }^{\circ} \mathrm{P}_{1}$ is lingual to its anterior atveolus. B. wakefieldi and B. triradiatus have different numbers of roots for P_{1-2} Irom B. brutyi and B. parnus. so the ir alveoli are not all homologous. In all species of Cercarems the alveoli of P_{1-2} lie in a straight line; this is also the ease for Trichosurns, Spilocuscus and Phalanger (where the tecth occur). Linearly-arranged alveoli are therefore thought to be plesiomorphic for burramyids.
8. Size of plagiaulacoid premolar. The sectorial premolar of Cercartems and phalangerids (and M_{1} of C. conciums) is smalter than that of Bur ranys. It is therefore assumed that an enlarged plagiautacoid premolar is synapomorphic for Burramys and apomorphic within the genus. Although P3 of B. parwis is larger than that of B. wakefieldi or B. brutyi, log-scaled ptots of P_{3} buccal crown surface area against jaw length (unpuht. data) suggest that P_{3} of B. parvis is not disproportionately large for its body size. P3 of B. rradialus. on the other hand, departs significantly from the line of best fit for P 3 size against body sizc. being disproportionately large. P_{3} of B. wakefieldi falls helow the line, suggesting that it is disproportionately small, but Studentized residuals do not show its departure from the line to be significant.
9. Relative sizes of anterior and posterior roots of plagiaulacoid premolar. Buccally, the posterior root of P_{3} is smalter, relative to its anterior root and crown, in B. wakefieldi than in other Burramys. The posterior root of P 3 is smalter (relative to the anterior root and the crown) in B. parzus than in B. brutyi. The anterior root of the large P 3 of B, triradiatus is massive, although the posterior root is comparatively smatt, the disparity is not as great as that in B. wakefieldi. In Cercartetus and phalangerids, the anterior and posterior roots of the sectorial premolar are suhequal; this is thought to be the plesionorphic condition.
10. Number of ridges on plagiaulacoid premolar, In B. brmyi and B. wakefieldi there are 5 or 6 ridges on each of the buccal and lingual faces of P_{3} and 5 or 6 associated dorsat cuspules. The lack of posterior and weakness of anterior cuspules in the holotype of B. wakefieldi appears to be the result of extreme wear on the formerly serrated tooth. In B. parns there are commonly 7 ridges and cuspules and in B. triradianus. 9. Phatangerids with smaller, unridged P3s are thought to be more plesiomorphic than those with larger, ridged P3s (Flamery et al., 1987); all have fewer ridges and cuspules than Buramys. Cercartems mams and C. coludatus have a single sharp dorsat cusp on the sectoriat premolar and C. concimuss one main cusp on its premolariform M1. A larger number of ridges and
cuspules is regarded as more derived within Burramys and a synapomorphy ol the genus.
11. Curvature of anterior profile of P_{3}. In lateral view, P3of B. wakefieldi and B. brutyi has a relatively straight (approximately vertical) anterior profile. In B. triradiatus and B. parvus the crown expands anteriorly to produce a curved profile. The sectorial P_{3} of Cercarterns does not curve forward anteriorly (although the autapomorphic premolariform M_{1} of C. concinnus does). Anterior curvature may be associated with increased P_{3} size, with enlargement having been achieved by anterior extension of the crown. However P3s of T. cauimus and T. vulpecula, which are curved, are smaller than those of Spilocuscus and Phalanger, which are less curved. Size and curvature are therefore not necessarily linked. It is possible that Miocene $\mathbf{P}_{3} s$ represent primary enlargement of the tooth without the functional claboration of other species, in which the inflated anterior edge may disperse stress, increase occlusal area, or perform some other function. A curved anterior profile is regarded as apomorphic within Burramyidac.
12. Lingual concavity/buccal convexity of P_{3}. The P_{3} blade of Burramys is concave lingually and convex buccally (particularly anteriorly). The contrast hetween lingual and buccal curvature is least pronounced in B. wakefieldi and B. brutyi and more pronounced in B. parms and slightly more in B. triradiatus. As with anterior profile curvature, this reature occurs in Trichosurus but not in Cercartetus, Spilocuscus or Plalanger: It is regarded as apomorphic.
13. Arching of dorsal edge of P_{3}. The dorsal edge of P_{3} is arched in B. parwus; in the other species it is straight, but in B. wiradiatus there is a slight curvature at the anterior end of the hlade. The sectorial teeth of Cercartems do not have a dorsal hlade edge homologous with that of Burramys and so do not provide a useful comparison. The dorsal edge of P_{3} is straight in phalangerids and this is assumed to be the plesiomorphic condition.
14. Divergence of P_{3} from anteroposterior axis of molar row. In Burramys, the longitudinal axis of P_{3} departs from the ramus such that it lorms an angle with the anteroposterior molar row axis. This angle is largest in B. wakefieldi and is targer in B. panus and B. triradiams than in B. brutyi. In Cercartens the longitudinal axis of the lower sectorial tooth is parallel to the anteroposterior axis of the molar row and within phalangerines, a more oblique placement of P3 is regarded as apomorphic (Flannery et al., 1987). Divergence of P3 from the anteroposterior axis of the molar row is a synapomorphy of Burramys; within Burramus, the plesiomorphic condition is taken to be a less divergent P3.
15. Transverse apical compression of P_{3}. In anterior view, the crown of P_{3} of Burrants tapers from the base, attenuating dorsally then terminating apically
with a serrated longitudinal median ridgc. This transverse apical compression is least pronounced in the Miocene species and most pronounced in B. triradiatus. Crowns of the scctorial premolars of Cercartetus, Trichosurus, Spilocuscus and Phalanger are less attenuated than those of Burramys. Increased dorsal transverse compression is synapomorphic for Burramys. Laterally compressed P3s are regarded as more derived than those with thicker apiees.
16. Distinction of talonid and trigonid of M1. In B. wakefieldi the talonid and trigonid ol M_{1} are elearly demarcated in occlusal view by lingual and buccal indentations. In B. brutyi and B. parvus the talonid and trigonid are less distinct. M_{1} is not known for B. triradiatus. Talonids and trigonids are more distinct in Cercartetus than in Burramys, indicating the plesiomorphic state. The fused talonid and trigonid departs further from primitive tribosphenic morphology. Alternatively, the structure of M_{1} in B. wakefieldi could be autapomorphic, with the crests defining the talonid and trigonid functioning primarily as buttresses for the anterolingual crests which may, in this animal, have extended the function of P_{3}. However, the former hypothesis is preferred.
17. Lingual displacement of protoconid of M_{1}. The protoconid of M_{1} is displaced further lingually in B. wakefieldi than in B. brutyi or B. parvus so that in B. wakefieldi the crests associated with P_{3} and the M_{1} protoconid, metaconid and entoconid form an almost straight line. The position of the protoconid is variable in Cercartetus and phalangerids. In the primitive tribosphenic molar, the protoconid is a buccal cusp, so lingual displacement is regarded as apomorphic.
18. Anterior displacement of metaconid of M1. The paraconid is absent in Burramys and the most anterior lingual cusp is the metaconid. In B. parvus the metaeonid is more anterior than in B. wakefieldi or B. brutyi, narrowing the gap in the $\mathrm{P}_{3}-\mathrm{Mt}$ crest. In the Phalangeridae and Cercartetus position of the metaconid relative to the protoconid is variable. Outgroup analysis does not resolve the polarity of this character. The metaconid of B. parwus occupics the position that in a plesiomorphic (tribosphenic) molar would have supported the paraconid, so the anteriorly displaced metaconid is regarded as apomorphic.

Inclination of M_{1} trigonid against P_{3}. The trigonid of M_{1} rises more stceply against the posterior facc of P_{3} in B. brutyi and B. wakefieldi than in B. parvus. Neither Cercarterus nor phalangerids give a clear indication of the polarity of this eharacter. It has developed a number of times in phalangerids and pilkipildrids and is probably homoplasious.
19. Relative length of lower molars. M2-4 ol Burramys differ in their lengths (relative to widths) such that B. brutyi <B. triradiatus <B. pan'us. $\mathrm{M}_{2} 4$ are not known for \dot{B}. wakefieldi but judg ing by their alveoli, they were of similar proportions to those of B . brutyi. In

Cercartetus, Trichosurus, Spilocuscus and Phalanger, the molars are relatively long, implying that this is the plesiomorphic condition.
20. Neomorphic cuspid at intcrsection of postmetacristid and preentocristid of $\mathrm{M}_{2}-3$. In B. brutyi and B. parvus there is usually a small neomorphic cuspid approximately half way along the lingual margin of the crown, at the junction of the postmetacristid and the preentocristid. This cuspid is not present in the few available lower molars of B. trivadiams, nor in Cercartetus, Trichosurus, Spilocuscus or Phalanger. suggesting that it is apomorphic in the Burramyidae.
Lingual cusps skewed ahead of buccal cusps of M2-3. In B. triradiatus, the lingual cusps of $\mathrm{M}_{2}-3$ are ahead of the buecal cusps, skewing the sides of the tecth slightly. This skew is less evident in B. bruyi and slightly less again in B. parnus. Cercartetus caudanus is about as skewed as B. parrus and is the least skewed of species of Cercartetus, with C. namus and C. concinnus showing about the same, incrcased degrce of skew. The amount of skew on the molars is variable within phalangerids, ranging from very minor to quite pronounced. Outgroup analysis gives no clear indication of whether skewed molars are plesiomorphic or derived in Burramys.
21. Transverse Joph(id)s of $\mathrm{M}_{2}-3$ and M^{2-3}. The transverse lophs and lophids of M^{2-3} and M_{2-3} are more completc in B. triradiatus than in B. brutyi or B. parvus, such that the central basins and the pre- and post-cingular basins of the tecth are deeper and more clearly definced in the Hamilton species. Cercarterus lacks transverse loph(id)s but this is probably apomorphic for the genus; lophs and lophids are well formed on the molars of the more plesiomorphic phalangcrids. Burramys triradiatus is thought to be relatively plesiomorphic in possessing more completc molar lophs and lophids.
22. Number of roots M_{1-3}. M1-3 are double-rooted in B. wakefieldi, B. brutyi and B. parnus, but in B. triradiatus are 3-rooted. Turnbull ct al. (1987) regarded the 3 -rooted condition as a plesiomorphic retention. However, Cercartetus, phalangerids and virtually all marsupials have 2 -rooted molars, making the plesiomorphic retention of 3 -rooted lower molars by B. triradiatus seem unlikely. The 3-rooted lower molars ol' B. triradiatus are interpreted as autapomorphics.
23. Number ol roots M4. M4 is single-rooted in B. paras. double-rooted in B. wakefieldi and B. bruryi, and has 3 roots in B. triradiatus. M4 of Cercartetus (wherc it occurs) and phalangerids has 2 roots. The single-rooted and threc-rooted M_{4} of B. parvus and B. triradiatus (respectively) are interpreted as alternative apomorphic states derived from a 2 -rooted plesiomorphic condition.
24. Reduction of M\&. M\& is most reduced in B. parvus and least reduced in B. triradiatus, with the Miocenc
species intermcdiate. Cercartetus lepidus and C. caudatus (apparently the most plesiomorphic Cercartetus) have M_{4}, though reduced; in C. namus and C. concinnus M_{4} is absent. In Trichosurus M_{4} is subequal to M1.3: in Spilocuscus and Phalanger (which are generally more derived than Trichosurus) it is slightly smaller than the anterior molars. Reduction of the posterior molars occurs frequently and independently. Since primitive members ol both outgroups have less reduced M_{4}, and since reduction of the molar row posteriorly is commonly a derived state, more reduced M4s are interpreted as apomorphic. Although M_{4} reduction correlates with M_{4} root number in Burramys, it is treated as a separatc character since, as dcmonstrated by the relative sizes and number of roots of M_{1-3} in the different species, there is not necessarily a connection between molar size and number of roots.
25. Enlarged maxillary vacuities. Maxillary vacuities are larger in B. parrus than in B. bruryi. The vacuities of Cercartetus do not resolve this character. Vacuities are less extensive in phalangerids than in B. parvus, so a less evacuated palate is regarded as plesiomorphic.
26. Anterior limit of P^{3} relative to zygomatic arch. P^{3}, and therefore the anterior of the upper molar row, is further forward on the maxilla relative to the jugal portion of the zygomatic arch in B, parus than in B. brutyi. In C. concinnus and C. caudatus the teeth are further forward than in Burramys; in C. namus (and possibly also C. lepidus) the anterior cxtent of the teeth is similar to that in B. parvus. In S. maculatus, P. carmelitae, T, arhemensis and T, vulpecula, the cheekteeth commence further forwards. The polarity of this character is not immediately evident, particularly as there are a variety of states within Cercartetus: however the anterior disposition of the teeth in phalangerids would argue for that being the plesiomorphic condition.
Enlarged P^{3} cingulum. The P_{3} cingulum is slightly more developed in B. parvus than B. bruyi and significantly more pronounced in B. triradiatus. It possibly developed in conjunction with the enlargement of p^{3} and the generation of greater bite forces at the P3s, functioning as a stopper for P_{3} during premolar function (as indicated by postcrolingual wear facets that stop abruptly at the cingulum in B. parvis and B. triradiatus) and also protecting the gums from hard food particles sectioned by the premolars. $\mathrm{P}^{3} \mathrm{~s}$ of Cercartetus and phalangerids are not sufficiently similar to those of Burramys to have homologous cingulae, so outgroup comparison cannot polarize this character. If the enlarged cingulum is linked to P^{3} size it is not an independent character.
Anterior attenuation of P^{3}. In dorsal view, P^{3} is more ovoid and in particular, more attenuated anteriorly, in B. triradiatus and in B. parnus than in B. brutyi. P^{3} is insufficienty similar in Cercartetus and phalangerids to Burramys to be useful in determining polarity of this character. Anterior altenuation may be associated with
P^{3} sizc and is probably linked to anterior inflation of P_{3}; it is not treated as an independent character.
27. Posterobuccal rotation of molars rotate around maxilla. Upper molar row rotation is greater in B. brufyi than in B. panves. The upper molars do not rotate buccally in a posterior direction in Cercartetus, but they do in phalangerids examincd. Using Cercarrenus as the primary outgroup and applying the principle of commonality, the rotating molar row of B. brutyi would be interpreted as more derived than the dental arcade of B. parus.
Pronounced anterobuccal cingular basin M^{1}. $\ln B$. brutyi there is a cingular basin on the anterobuccal corner of M_{1}; in B. triradiatus there appears to be a narrow cingular pocket and in B, parvus the pocket is little more than a sloping cingular shelf. Inflation of the anterobuccal comer of M^{P} is a synapomorphy for Burramys. It seems that the degree of definition of the anterobuccal pocket is inversely related to lingual shift of the paracone. Therefore, it is not treated as a separate character.
28. Inflation of lingual cusps of M^{1}. No maxillary material is available for B. wakefieldi. In each of the other species of Burramys, the lingual side of M^{1} is enlarged by a protoconule on the lingual margin, anterior to the protocone. Both protoconule and metaconule are more inflated in B. parvus than in other spccies and in association with this, lingual cusps of B. parvus lie closer to the lingual edge ol the tooth than in the other species. There is no protoconule in C. lepidus or C. caudatus, it is present (rclatively undeveloped) in C. concinmus and perhaps in a rudimentary state in C. namus. There is no protoconule in Trichosurus, Strigocuscus or Phalanger. An enlarged protoconule is considered apomorphic.
29. Lingual displacement of paracone of M^{1}. The M^{1} paracone of B. parnus is displaced lingually so that the ectoloph is oblique with respect to the anteroposterior axis of the tooth. In B. brutyi and B. triradiatus the ectoloph is approximately parallel to the tooth axis, with the paracone more buccal. The M^{1} paracone is not displaced lingually in Cercarterus or phalangerids, indicating that this is the plesiomorphic condition.

A Wagner analysis was performed using both ACCTRAN and DELTRAN algorithms of PAUP (Swafford, 1989). Wagner parsimony allows reversal or convergence to construct trees with the fewest steps. Where reversal or convergence would produce an equally parsimonious solution, ACCTRAN accelerates character transformations, favouring reversal, whereas DELTRAN delays transformations, favouring convergence (Wiley et al., 1991). Characters were ordered and a hypothetical ancestral Burramys, having all character states 0, was used to root the analysis. ACCTRAN (Fig. 10) or DELTRAN optimisa-

FIG. 10. A phylogenetic hypothesis of intrageneric relationships of Burramys. Apomorphies listed at nodes; character numbers in boxes refer to Table 5. Character state transformations indicated by arrows.
tion generated a single most parsimonious tree. The topology of this tree is identical for both algorithms. Burramys parvus and B. triadiatus form a clade to which B. wakefieldi is the plesiomorphic sister group; B. brutyi is the plesiomorphic sister group to a clade containing
all other species of Burramys. For some characters, the path of transformation differs depending upon whether transformation is accelerated or delayed. There are several convergent character states in the DELTRAN tree, no convergences and more reversals in the ACCTRAN tree. When transformation is delayed the following character states arise convergently in B. brutyi and B. parvus: loph(id)s of M2-3 reduce; neomorphic cuspid appears on $\mathrm{M}_{2}-3$; and M_{1} talonid and trigonid become less distinct. Basal thickening of I_{1} occurs independently in B. brutyi and B. triradiatus. The relative length of the lower molars decreases independently in B. brutyi and B. wakefieldi. With delayed transformation B. parviss reverses to a more plesiomorphic state of reduced robusticity and relatively long molars, and the relative size of M_{4} in B. triradiatus increases secondarily. These reversals also occur when transformation is accelerated, as do the following: in B. parvus and B. triradiatus the relative length of lower molars increases (to a greater degree in B. parvus); in B. par'us the $\mathrm{I}_{2}-\mathrm{P}_{2}$ interval increases; in B. triradiatus loph(id)s develop on M2-3 and the neomorphic cuspid disappears from M_{2-3}; and in B. wakefieldi the talonid and trigonid of M_{1} are relatively distinct from one another.

Although a single most parsimonious tree was generated by this analysis, another tree only one step longer placed B. wakefieldi as the plesiomorphic sister-group of the other three species, and B. brutyi as the plesiomorphic sistergroup of the B. triradiatus $+B$. parvus clade. A bootstrap analysis using a branch and bound search with 100 repetitions, to place confidence estimates on clades (from ACCTRAN) found the node defining the B. triradiatus $+B$. parvus clade to be supported 84% of the time, but the node separating B. brutyi and B. wakefieldi occurred in less than 50% of repetitions. Using DELTRAN the B.triradiatus + B. parvus clade was supported 78% of the time, and the node separating the other 3 species from B. brutyi was supported by 55% of repetitions. In both cases, the node separating B. brutyi and B. wakefieldi is poorly resolved.

DISCUSSION

Burramys brutyi is the only species of Burramys at Riversleigh and is not known elsewhere. It is represented by >150 specimens from 23 Sites in Systems A, B and C; it is one of the most widely distributed (spatially and temporally) marsupials at Riversleigh. Its earliest oc-
currence at late Oligocene (Myers \& Archer, 1997) White Hunter Site is of similar age to the type locality of B. wakefieldi on Mammelon Hill, Lake Palankarinna, South Australia (Woodburne et al., 1993).
Metrie analyses did not reveal any significant size variation between sites; variation within sites being as great as between sites. This persistence in unchanged form from the late Oligocene through mueh of the Mioeene suggests an unusual degree of ecological stasis for the species.

Fossil Burramys in Victoria, South Australia and NW Queensland shows that small existing populations of B. parvus are remnants of a previously more diverse and far more widespread lineage, now apparently in decline. This fact urges partieular conservation coneern for the extant species. Although populations of B. parrus are apparently stable, they are threatened both by habitat disturbance and greenhouse warming. which could jeopardise their ability to survive (Geiser \& Broome 1993).

ACKNOWLEDGEMENTS

Comparative material was made available by J. Dixon, L. Frigo, T. Rich and E. Thompson, Museum of Victoria; N. Pledge, South Australia Museum; and J. Wombey, C.S.I.R.O.. Gunghalin. The vital support of the following organisations is also gratefully acknowledged: the Australian Research Council (grants to M. Archer); the National Estate Grants Seheme Queensland (to A. Bartholomai and M. Archer); the Department of Environment, Sports and Territories; the Queensland National Parks and Wildlife Service; the University of New South Wales; IBM Australia Pty Ltd; ICI Australia Pty Lid; the Australian Geographic Society; Wang Australia Pty Lid; the Queensland Museurn; the Australian Museum; Mt Isa Mines Pty Ltd; Surrey Beatty \& Sons Pty Lid; the Riversleigh Society Inc.; the Royal Zoological Society of New South Wales; the Linnean Society of New South Wales; and many private supporters.

LITERATURE CITED

ANON. 1966. A relict marsupial. Nature 212: 225.
APLIN, K. \& ARCHER, M. 1987. Recent advances in marsupial systematics with a new syncretic classification. Pp. xv-lxxii. In Archer, M. (ed.), Possums and Opossums: Studies in Evolution. (Surrey Beatty \& Sons and Royal Zoological Society of New South Wales: Sydney).
ARCHER, M. 1984. The Australian marsupial radia-
tion. Pp. 633-808 In Archer, M. \& Clayton, G. (cds), Vertebrate Zoogeography and Evolution in Australasia. (Hcsperian Press: Sydney).
ARCHER, M., GODTHELP, H., HAND, S.J. \& MEGIR1AN, D. 1989. Fossil mammals of Riversleigh, northwestern Queensland: preliminary overvicw of biostratigraphy, correlation and environmental change. Australian Zoologist 25: 29-65.
ARCHER, M., HAND, S.J. \& GODTHELP, H. 1991. Riversleigh. 2nd ed. (Reed: Sydney).
BAVERSTOCK, P.R., BIRRELL, J. \& KRIEG, M. 1987. Albumin immunologic relationships among Australian possums: A progress report. Pp. 229234. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrey Beatty \& Sons and the Royal Zoological Socicty of New South Wales: Sydney).
BROOM, R. 1896. Report on a bone breccia deposit near the Wombeyan Caves, N.S.W.: with descriptions of some new species of marsupials. Proceedings of the Limean Society of New South Wales 81:48-61.
CREASER, P. 1997. Oligocene-Miocene sediments of Riversleigh: the potential significance of topography. Memoirs of the Queensland Museum 41: 303-314.
FLANNERY, T., ARCHER, M. \& MAYNES, G. 1987. The phylogenetic relationships of living phalangerids (Phalangcroidea: Marsupialia) with a suggested new taxonomy. Pp. 477-506. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrey Beatty \& Sons and the Royal Zoological Society of New South Walcs: Sydney).
FLEMING, M.R. 1985. The thermal physiology of the Mountain Pygmy-possum Burramys parvus (Marsupialia: Burramyidac). Australian Mammalogy 8: 79-90.
FLOWER, W.H. 1867. On the development and sucecssion of teeth in the Marsupialia. Philosophical Transactions of the Royal Socicty, London 157: 631-641.
GEISER, F. \& BROOME, L.S. 1993. The effect of temperature on the pattern of torpor in a marsupial hibernator. Journal of Comparative Physiology B 163: 133-137.
GEISER, F., SINK, H.S., STAHL, B., MANSERGH, 1.M. \& BROOME, L.S. 1990 . Differences in the physiological response to cold in wild and labora-tory-bred Mountain Pygmy-Possums, Burramys parvus (Marsupialia). Australian Wildlife Research 17: 535-539.
GINGERICH, P.D. 1974. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Palcontology 48: 895-903.
LUCKETT, P. 1993. An ontogenetic assessment in dental homologies in the therian mammals. I p . 182-204. In Szalay, F.S., Novacek, M.J. \& McKenna, M.C. (eds), Mammal phylogeny: Mesozoic differentiation, multituburculates,
monotremes, early Therians, and Marsupials". (Springer-Verlag: New York).
MANSERGH, I. KELLY, P. \& SCOTTS. D. 1987.
Draft management strategy and guidelines for the eonservation of the Mountain Pygmy-possum, Burramys pantus, in Victoria. Arthur Rylah Institutc of Environmental Research Technical Report Series No. 53.
MANSERGH, I. \& SCOTTS, DJ. 1989. Hahitat continuty and social organisation of the Mountain Pygmy-possum restored hy tunnel. Journal ol Wilalite Management 53: 701-707.
1990. Aspeets of the life history and breeding biology of the Mountain Pygmy-possum, Burramys parvus. (Marsupialia. Burramyidae) in alpine Vietoria, Australian Manmalogy 13: 179-141.
MAURER, B.A., BROWN, J.H. \& RUSLER, R.D. 1992. The microand macro in body size evolution. Evolution 46: 939-953.
MUIRHEAD, J. 1994. Systematics, evolution and palacobiology of Recent and fossil bundicoots (Peramelemorphia, Marsupialia). Unpublished PhD thesis, University of New South Walcs, N.S.W.
MYERS, T.J. \&* ARCHER. A. 1997. Kıutermija ugama (Marsupialia, Ilaridaci: a revised and extended systematic analysis based on material from the late Oligocene of Riversleigh, northwestern Quecusland. Memoirs of the Queenslind Museum 41: 379-392
PLEDGE, N. 1987. A new speces of Burrantys Broom (Marsupialia: Burramyidae) from the middle Miocene of South Australia. Pp. 725-728. In Alcher, M. (ed.). Possums and Opossums: studies inevolution. (Surrey Beatty \& Sons and the Royal Zuolugital Society of New South Wales: Sydney).
RIDE, W.D.L. 1956. The affinities of Burram's partus Brem a fossil phalangeroid marsupial. Procectings of the Zoologieal Suciety of Londun 127: 413-429.
ROTH, V.L. 1981. Constancy in the size ratios of sympatric species. American Nuturalist 118:394404.

SIMPSON. G.G. 1933. The 'plugiaulacoid' sype of mammalian dentition, a study of eonvergenee. Journal of Mammalngy 14:97-107.
SIMPSON, G.G., ROE, A. \& LEWONTIN. R.C. 1460.

Quantutave Zoology. (Harcourt. Brace \& Co: New York).
SPRINGER, M. \& KIRSCH, J.A.W. 1989. Rates of single-copy DNA evolution in phalangeriform marsupials. Molecular Biology and Evolution f: $331-3+1$
STIRRAT, S. 1981. The functional morphology of the plagiaulacoid premolar of Burrumys parnus Broom. Unpublished Honuurs thesis, Monash University, Clayton, Victoria.
TURNBULL, W.D. \& LUNDELIUS, E.L. Jr I970. "The Hamilton Fituna, a late Pliocene manmal ban fanma from the Grange Burn, Vietoria, Australia, Fieldiana: Gcology 19: 1-163.
TURNBULL. W.D \& SCHRAM, F.R. 1972. Broom Cave Cercartelus: Wih observations on Pygmy Possum dental morphology, variation and taxonumy. Records of the Ausiratian Museum 28:437464.

TURNBULL, W.D., RICH, I:H.V. \& LUNLDELIUS, E.L. Jr 1987. Burramyids (Marsupialia: Burranyidac) of the early Plocene Hamilion Local Fauna, southwestern Vietoria, Pp. 729-739. InArcher, M. (cd.) 'Possums and Opusisums: studies in evelution. (Surrey Beaty \& Suns and the Royal Zoological Society of New South Wales: Sydney).
WAKEFIELD, N.A. 1960. Recent mammal bones in the Buchan Distnct. Victorian Naturilist 77: 164 198.

WARNEKE, R.M. 1967. Discovery of a living Burramys. Australian Mammal Society Bulletin 2: 94-95.
WILEY, E.O.,SIEGEL-CAUSEY, D., BROOKS, D.R. d FUNK, V.A. 1991. The compleat cladist: a primer of phylogenetic procedures. University of Kansas Museum Natural History Special Publication: 19.
WOODBURNE, M.O., MACFADDEN, B.J., CASE, J.A., SPRINGER, M.S., PLEDGE, N.S., POWER, J.D., WOODBURNE, J.M. \& SPRINGER, K.B. 1993. Land mammal biostratigraphy and magnetostratigraphy of the Etadunna Formation (Iate Oligocenc) of South Australia. Joumal of Vertchrate Paleontology 13: 487-515.

